Mathématiques

Question

Bonjour pouvez vous m’aider :)

On considère les points A(2;3), B(5 ; 7) et C(-7;-9).
1. Calculer les coordonnées des vecteurs AB et AC.
2. Calculer le déterminant des vecteurs AB et AC.
3. Que peut-on en déduire pour les vecteurs AB et AC ? Et pour les points A, B et C ?


Bonjour pouvez vous m’aider :) On considère les points A(2;3), B(5 ; 7) et C(-7;-9). 1. Calculer les coordonnées des vecteurs AB et AC. 2. Calculer le détermina

2 Réponse

  • Bonjour,

    Question 1 :

    [tex]\vec{AB} = (5 - 2 \ ; 7 - 3) = (3;4)\\\vec{AC} = (-7 - 2 \ ; -9 - 3) = (-9;-12)[/tex]

    Question 2 :

    [tex]det(\vec{AB};\vec{AC}) = 3 \times (-12) - 4 \times (-9) = 0[/tex]

    Question 3 :

    On peut en déduire que les vecteurs [tex]\vec{AB} \ et\ \vec{AC}[/tex] sont colinéaire car leur déterminant est nul.

    Les points A,B et C sont alignés car les vecteurs [tex]\vec{AB} \ et\ \vec{AC}[/tex] sont colinéaire.

  • Bonjour, voilà ta réponse
    Image en pièce jointe de la réponse antoinelopez456